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Social interactions play a central role in human learning. 
Throughout development, children acquire knowledge, 
skills, and attitudes by modeling other individuals (e.g., 
Bandura, 1986). Through interactions with peers and 
adults alike, children are exposed to different ideas and 
perspectives and develop a more sophisticated under-
standing of the world around them (e.g., Vygotsky, 
1934/1986). Classrooms are no exception: The social 
dynamics among students and between students and 
teachers have a profound impact on students’ engage-
ment, learning, and well-being (Hamre & Pianta, 2006). 
Recent research suggests that the mere presence of other 
students in the classroom can impact students’ attentive-
ness and learning (Forrin et al., 2021). Relatedly, syn-
chronous learning (where students and teachers interact 
in real time) leads to a greater sense of belonging and 
better learning outcomes compared with asynchronous 

learning (e.g., students viewing  prerecorded lectures on 
their own; Martin et al., 2021; Peterson et al., 2018).

Despite the central role of social dynamics in learn-
ing, little is known about the brain mechanisms that 
support this process (Hari et al., 2015; Pan et al., 2022; 
Redcay & Schilbach, 2019; Schilbach et al., 2013). This 
is because research on learning typically focuses on 
individuals measured in a controlled environment (e.g., 
inside a brain scanner). In the past few years, there has 
been growing interest in how brain activity aligns 
across individuals, a phenomenon we will refer to here 
as brain-to-brain synchrony (BBS; Babiloni & Astolfi, 
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Abstract
Much of human learning happens through interaction with other people, but little is known about how this process is 
reflected in the brains of students and teachers. Here, we concurrently recorded electroencephalography (EEG) data 
from nine groups, each of which contained four students and a teacher. All participants were young adults from the 
northeast United States. Alpha-band (8–12 Hz) brain-to-brain synchrony between students predicted both immediate 
and delayed posttest performance. Further, brain-to-brain synchrony was higher in specific lecture segments associated 
with questions that students answered correctly. Brain-to-brain synchrony between students and teachers predicted 
learning outcomes at an approximately 300-ms lag in the students’ brain activity relative to the teacher’s brain activity, 
which is consistent with the time course of spoken-language comprehension. These findings provide key new evidence 
for the importance of collecting brain data simultaneously from groups of learners in ecologically valid settings.
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2014; Hamilton, 2021; Hasson et  al., 2012; Shamay-
Tsoory et  al., 2019). There is evidence that BBS can 
capture cognitive, affective, and social aspects of behav-
ior, including memory retention (Cohen & Parra, 2016; 
Hasson et  al., 2008) and learning outcomes (Cohen 
et al., 2018; J. Liu et al., 2019; Meshulam et al., 2021; 
Pan et al., 2020; Piazza et al., 2021; Zheng et al., 2018; 
Zhu et al., 2021). Yet most previous research has been 
constrained to noninteracting individuals and/or to 
methods that lack temporal specificity (functional MRI 
[fMRI] and functional near-infrared spectroscopy [fNIRS]).

Surprisingly, a recent electroencephalography (EEG) 
study conducted in a real-world classroom found that 
BBS between students reflected student engagement 
but not their test performance (Bevilacqua et al., 2019). 
This is unexpected because BBS is hypothesized to be 
driven, at least partially, by shared attention (Dikker 
et al., 2017; Tomasello, 1995), and shared attention has 
been shown to affect subsequent memory and learning 
(Shteynberg, 2015).

Here, we used EEG to simultaneously record brain 
activity from groups of four students and a teacher in 
a simulated classroom to investigate whether BBS, both 
between students and between the students and the 
teacher, is associated with learning outcomes (Fig. 1a). 
We further explored how fluctuations in BBS through-
out lectures predicted learning at the individual-test-
question level and examined how the temporal lag 
between students’ and teachers’ brain activity moder-
ated the relationship between BBS and learning.

Open Practices Statement

The data and code for this study have not been made 
publicly available, but requests for them can be sent to 
the corresponding author. Sample test questions can be 
found in the Supplemental Material available online. 
Requests for the full test as well as lecture transcripts 
can be sent to the corresponding author. The study was 
not preregistered.

Method

Participants

Forty-three participants (28 females) were recruited 
through the psychology department’s research partici-
pation system and through ads posted around campus. 
During recruitment, participants were asked to confirm 
that they were (a) a native English speaker, (b) right-
handed, (c) between the ages of 18 and 30, (d) a non-
science major (for college students), and (e) that they 
had no known history of neurological conditions. Par-
ticipants were tested in groups of four students each 

(with the exception of one group of three students that 
was later excluded from analysis; see below). The 
groups were formed on the basis of the order in which 
participants signed up for the study and their avail-
ability. In two groups, because of technical issues, only 
two participants had usable EEG data; because student-
to-student BBS could not be determined for all dyads, 
all participants in these two sessions were excluded 
from analysis (n = 7). Five additional participants were 
omitted from analysis: three because of technical issues 
during EEG data collection and two because they were 
not native English speakers (and therefore did not meet 
the inclusion criteria; see Table S1 in the Supplemental 
Material). Thus, the final sample consisted of 31 par-
ticipants (21 female) across nine groups. All participants 
completed high school, and the majority (76.2%) were 
current college undergraduates (age: M = 20.6 years, 
SD = 3.0).

The two teachers (one female) were professional 
high school science teachers. Of the nine groups 
included in analysis, the female teacher taught four 
groups, and the male teacher taught five. The students 
and teachers had no prior acquaintance with each 
other. The research was reviewed and approved by  
an institutional review board, and all participants pro-
vided written informed consent. All study procedures 
were conducted in accordance with the American Psy-
chological Association guidelines for human subjects 
research.

Statement of Relevance

Much of human learning happens when we inter-
act with other people, but little is known about 
how this process is reflected in the brain activity 
of students and teachers. The reason why is that 
learning is typically investigated in individual par-
ticipants in controlled laboratory settings (e.g., 
inside a brain scanner). In this study, we used 
electroencephalography (EEG) to track the brain 
activity of small groups of students and their 
teacher during a lecture. We found that the level 
of brain-to-brain synchrony between students and 
teachers predicted student learning: Students with 
more similar brain responses to other students 
and to the teacher showed better learning out-
comes. Further, brain-to-brain synchrony during 
specific segments of the lecture predicted how 
students answered individual test questions. These 
findings highlight the value of brain data collected 
simultaneously from groups of learners in real-
world-like settings.
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Procedure

Students were seated evenly and randomly around a 
table, and the teacher was seated at the head of the 
table (Fig. 1). The experiment took place in a laboratory 
classroom equipped with a projector and three video 
cameras. Following EEG set up, baseline EEG recordings 
(eyes open and eyes closed) were taken to test data 
quality. The lesson comprised four approximately 7-min 
teacher-led lectures (M = 6:43 min, SD = 0:45) on dis-
crete topics in biology and chemistry: bipedalism, insu-
lin, habitats and niches, and lipids. Slides were projected 
onto a screen behind the teacher and controlled by the 

teacher via a tablet computer (see Fig. 1). Students were 
instructed to sit still, minimize head motion, and refrain 
from asking questions during the lectures in order to 
minimize speaking- and movement-related artifacts. 
Each lecture was preceded by brief activities, in which 
students could interact more freely with one another 
and with the teacher (not included in the current analy-
sis). Each lecture was immediately followed by a brief 
topic-specific assessment to gauge lecture engagement 
and content knowledge (see below). Assessments were 
administered via a tablet computer that was placed next 
to each student. The lesson concluded with one final 
3-min eyes-open baseline recording.

Fig. 1. Experimental setup and timeline. (a) Four students and a teacher were concurrently measured with electroencephalography 
(EEG) during a science lesson. (b) The lesson comprised four minilectures. A pretest was administered 1 week prior to the EEG session, 
and posttests were administered immediately after each lecture and 1 week after the EEG session.
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EEG hardware and data collection

Participants’ EEG was recorded using a 32-channel Eno-
bio 32 5G gel sensor system (Neuroelectrics, Barcelona, 
Spain; sampling rate = 500 Hz). An ear clip with two 
electrodes (common mode sense [CMS] and driven right 
leg [DRL]) served as a dual reference. Electrode place-
ment followed the standard 10-10 EEG system. The  
Neuroelectrics Instrument Controller (NIC2) software 
application was used to record data and assess signal 
quality. Data were aligned between students and the 
teacher after recording at the millisecond level using 
wireless triggers that were sent every second by a tablet 
computer via LabStreamingLayer (Kothe, 2014).

Quantifying learning outcomes

For each lecture, student learning was assessed using 
10 multiple-choice recognition and comprehension 
questions, which were developed by the two participat-
ing teachers (see Table S2 in the Supplemental Mate-
rial). In order to measure learning at the individual 
question level, we used the same questions in the pre-
test, immediate posttest, and delayed posttest. To mini-
mize priming effects, we administered the pretest a 
week before rather than immediately before the EEG 
session (Fig. 1b). Additionally, the participants were 
instructed not to discuss the material with each other 
or read about the topics covered in the lectures between 
the pretest and posttests. Two measures of learning 
were computed: (a) pretest-to-immediate-posttest 
change and (b) pretest-to-delayed-posttest change.

EEG preprocessing

All preprocessing was carried out using MATLAB (Ver-
sion R2018b; The MathWorks, Natick, MA) in conjunc-
tion with EEGLAB (Version 14.1.1b; Delorme & Makeig, 
2004). After a combination of a high-pass (> 0.5 Hz) 
and a low-pass (< 35 Hz) finite impulse response filter, 
noisy channels were identified and removed using a 
combination of automatic channel rejection (kurtosis, 
z score = 3) and inspection of channel power spectra. 
Continuous EEG data were then separated into 1-s 
epochs and visually inspected for nonneural artifacts. 
Independent components analysis was then conducted 
to identify and remove components that were associ-
ated with eyeblinks and eye movements ( Jung et al., 
1997). Finally, abnormal residual epochs with signals 
outside of the –100-µV to 100-µV range were automati-
cally tagged and visually inspected. Because of the 
nature of this experiment, teacher data were inherently 
noisier than those of students. As a result, a more strin-
gent data removal approach was required to obtain 

high-quality teacher data (see Table S3 in the Supple-
mental Material).

EEG analysis

The data were analyzed using custom-built MATLAB 
code and the FieldTrip toolbox (Oostenveld et  al., 
2011). Using Butterworth filters of order four, we  
filtered EEG data within three frequency bands: theta 
(3–7 Hz), alpha (8–12 Hz), and beta (13–20 Hz). The 
instantaneous phase of the filtered EEG signals was 
extracted using the Hilbert transform. Then, for each 
1-s epoch and for each one-on-one paired combina-
tions of electrodes (e.g., O1–O1, P3–P3), circular cor-
relation ( Jammalamadaka & Sengupta, 2001) was 
calculated as follows:
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where x corresponds to an EEG channel in Participant 
1 and y corresponds to the same EEG channel in Par-
ticipant 2. x  and y  are the mean directions of the EEG 
channels. N is the number of samples in each epoch 
(N = 500). In the calculation of circular correlation, only 
overlapping EEG channels and epochs were considered. 
In other words, if a specific channel or epoch was 
excluded for Participant 1, it was also excluded for Par-
ticipant 2 (Bevilacqua et al., 2019; Dikker et al., 2017).

Circular correlation was chosen because it has been 
shown to be the least sensitive to spurious couplings 
of EEG hyperscanning data (Burgess, 2013). Circular 
correlations were calculated for each pair of students 
within a group and between each student and the 
teacher (see Fig. S1 in the Supplemental Material). Cal-
culated circular correlations were normalized by Fish-
er’s Z transformation and averaged across epochs, 
lectures, and electrode pairs to produce more stable 
measures. Finally, circular correlations values were 
averaged within three predefined regions of interest 
(ROIs) adopted from (Clarke et  al., 2011): posterior 
electrodes (P3, P4, P7, P8, PO3, PO4, Pz, Oz, O1, O2), 
central electrodes (Cz, T7, T8, C3, C4, FC5, FC6, CP1, 
CP2, CP5, CP6), and frontal electrodes (F3, F4, F7, F8, 
Fz, Fp1, Fp2, AF3, AF4, FC1, FC2).

For power analysis, the 1-s epochs were multiplied 
with a Hanning taper, and power spectra (4–30 Hz) 
were computed using a fast Fourier transform. Power 
spectra were then averaged across all epochs within 
each lecture. To normalize the data, we divided alpha 
power by the averaged power in the 4 to 20 Hz band 
(referred to as “relative power”; Dikker et al., 2020).
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In lecture segment analysis, we averaged data across 
question-specific epochs identified on the basis of the 
lecture transcript rather than averaging circular correla-
tion values across the entire duration of each lecture. 
Because information needed to answer a specific ques-
tion could have been mentioned more than once in  
the lecture, all these instances were included in the 
analysis. However, to obtain stable BBS estimates, we 
included lecture segments of only 3 s or longer (similar 
results were obtained with higher thresholds of 5 s and 
7 s). A question was categorized as “learned” if a stu-
dent answered it correctly in the posttest but not in the 
pretest. A question was categorized as “not learned” if 
a student’s answer had not changed between the pretest 
and the posttest (i.e., the student either already knew 
the answer to the question before the lecture or 
answered it correctly before the lecture but incorrectly 
after the lecture). BBS values were minimum-maximum 
normalized before averages were computed across 
students.

In time-lagged cross-correlation analysis, for each 
student–teacher dyad, we shifted the time course of the 
teacher between –500 ms and 500 ms in steps of 100 
ms with respect to the time course of the student (simi-
lar to the procedure of Wass et al., 2018). Alpha-band 
BBS was computed for each temporal lag as described 
above.

Statistical analysis

A within-dyad bootstrapping analysis was used to control 
for spurious (i.e., coincidental) BBS (Pérez et al., 2019; 
Zhou et al., 2021). For each student–student and student–
teacher dyad, BBS was computed between all combina-
tions of lectures given at different time points (e.g., 
Lecture 1–Lecture 2, Lecture 1–Lecture 3). We expected 
that BBS would be higher for matching versus nonmatch-
ing lectures. This hypothesis was tested using a nonpara-
metric bootstrap-based t test, in which BBS values for 
nonmatching lectures were shuffled 10,000 times and 
compared with the real BBS values. This analysis was 
repeated for each combination of frequency band and 
region of interest, and the resulting p values were false 
discovery rate (FDR) corrected for multiple comparisons 
(q = 0.05; Fig. S2 in the Supplemental Material).

Because students were nested within groups, data 
were analyzed using multilevel modeling treating group 
as the unit of analysis to control for nonindependence 
in student responses. The MIXED procedure in SPSS 
was used. BBS was considered a Level 1 predictor and 
pretest-to-immediate/delayed-posttest changes were 
treated as the outcome variables.

Results

Behavioral results

Test performance (i.e., proportion of correct answers) 
significantly increased from pretest (M = .43, SD = .02) to 
the immediate posttest (M = .73, SD = .02), F(1, 39.51) = 
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Fig. 2. Association between brain-to-brain synchrony (BBS) and 
learning outcomes. (a) Averaged scores (proportion of correct 
answers) in the pretest, immediate posttest, and delayed posttest. 
Each dot represents one participant, and horizontal lines depict 
means for all participants; gray regions represent one standard devia-
tion. Asterisks indicate significant differences between mean test 
scores (p < .05). (b) The association between alpha-band BBS and 
pretest-to-delayed-posttest change. All values were normalized to a 
scale from 0 to 1 (maximum–minimum) for presentation purposes. 
Each dot corresponds to the alpha-band BBS in central electrodes 
between one student and all the other students in the group, averaged 
across the four lectures. The error band denotes the 1-SE prediction 
interval from a least-square fit.
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269.07, p < .001, and from the pretest to the delayed post-
test (M = .64, SD = .02), F(1, 30.27) = 93.01, p < .001. Test 
performance declined over the course of the week 
between the immediate and delayed posttests, F(1, 
31.06) = 17.81, p < .001 (Fig. 2a). Pretest performance was 
a predictor of performance on the delayed posttest, F(1, 
28.22) = 9.67, p = .004, but not on the immediate posttest, 
F(1, 28.77) = 1.35, p = .255.

Student-to-student BBS and learning 
outcomes

We first assessed the statistical significance of BBS by 
comparing student dyads’ BBS across matching (e.g., Lec-
ture 1–Lecture 1) and nonmatching lectures (e.g., Lecture 
1–Lecture 2). A nonparametric bootstrap-based t test was 
used to test the hypothesis that BBS in matching lectures 
would be higher than BBS in nonmatching lectures (see 
the Method section). Across three frequency bands (theta, 
alpha, and beta) and three ROIs (posterior, central, and 
frontal), only alpha-band BBS in central electrodes was 
statistically significant (p = .009, FDR corrected; Fig. S2). 
Therefore, all subsequent analyses were conducted on 
this frequency-band–ROI combination.

To assess whether learning outcomes (pretest-to-post-
test change) were predicted by BBS during lectures, we 
constructed a multilevel model (students nested within 
groups). This analysis revealed that alpha-band BBS sig-
nificantly predicted both pretest-to-immediate-posttest 
change, F(1, 14.32) = 7.73, p = .014, as well as pretest-
to-delayed-posttest change, F(1, 16.43) = 11.14, p = .004 
(Fig. 2b). Time (immediate learning vs. delayed learning) 
did not moderate the main effect of BBS on test change, 
Time × BBS interaction: F(1, 29) = 0.67, p = .42.

We also computed the relative alpha power in cen-
tral electrodes during each lecture (see the Method 
section). The association between alpha power and 
pretest-to-posttest change was not significant, immedi-
ate posttest: F(1, 28.49) = 3.72, p = .064; delayed post-
test: F(1, 28.91) = 1.18, p = .285.

BBS within lecture segments

We further examined whether variations in alpha-band 
BBS throughout the lecture could predict learning at the 
individual-test-question level. Test questions were clas-
sified as either learned (if a student answered correctly 
in the posttest but not in the pretest) or not learned (if 
a student’s answer had not changed between the pretest 
and the posttests). Then, BBS was computed separately 
for lecture segments corresponding with these two cat-
egories of questions (Fig. 3a). Alpha-band BBS in central 
electrodes was significantly higher for learned than for 

nonlearned information, both for the immediate posttest 
(learned: M = .54, SD = .02; not learned: M = .47, SD = 
.02), F(1, 30) = 6.38, p = .017, and the delayed posttest 
(learned: M = .54, SD = .02; not learned: M = .48, SD = 
.01), F(1, 30) = 6.38, p = .017 (Fig. 3b).

Student-to-teacher BBS

Because the teacher served as the speaker and  
the students as listeners, we hypothesized that student-
to-teacher BBS would peak at a nonzero lag (i.e., when 
the teacher’s brain activity is shifted backward relative 
to the student’s brain activity; Stephens et al., 2010). To 
test this hypothesis, we computed time-lagged student-
to-teacher BBS and assessed the significance level of 
each temporal lag using the previously described boot-
strapping procedure (see the Method section). Despite 
the presence of speech-related artifacts in the teachers’ 
EEG data, which required additional preprocessing and 
epoch removal (Table S3), student-to-teacher BBS was 
significant at a –300-ms lag (i.e., when the teacher’s 
brain activity preceded the brain activity of students by 
about 300 ms). This was the only temporal lag at which 
student-to-teacher BBS reached significance (p = .015, 
uncorrected; Fig. 4a). Student-to-teacher BBS did not sig-
nificantly differ between the two teachers, F(1, 6.905) = 
0.76, p = .41 (Fig. S3 in the Supplemental Material). 
Critically, student-to-teacher BBS at the –300-ms tem-
poral lag significantly predicted pretest-to-delayed-
posttest change (r = .46, p = .009; Fig. 4b) but not 
pretest-to-immediate-posttest change (r = .27, p = .142).

Discussion

Our aim in the current study was to explore the tem-
poral dynamics of BBS between students and teachers 
and its relationship with student learning. Although BBS 
has been previously associated with several learning-
related variables, such as student engagement and 
social dynamics between students and teachers (Babiker 
et al., 2019; Bevilacqua et al., 2019; Dikker et al., 2017; 
Ko et al., 2017; Poulsen et al., 2017), there are conflict-
ing results about its relationship with learning itself. 
Several recent studies provide evidence that BBS is 
associated with learning outcomes, but most of these 
studies were constrained to fNIRS and fMRI, which lack 
temporal specificity ( J. Liu et al., 2019; Meshulam et al., 
2021; Pan et al., 2020; Piazza et al., 2021; Zheng et al., 
2018; Zhu et al., 2021), and/or to individual participants 
who were not tested simultaneously (Cohen et al., 2018; 
Meshulam et al., 2021).

The current study substantially extends previous 
fMRI/fNIRS research by demonstrating that BBS between 
students and teachers measured at the millisecond level 
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Fig. 3. Lecture segment analysis. (a) Question-specific time intervals where relevant content was delivered by the teacher were identified 
on the basis of the lecture transcript. (b) Alpha-band brain-to-brain synchrony (BBS) in central electrodes was measured separately for 
lecture segments associated with learned and nonlearned items. The difference between learned and nonlearned items is plotted for the 
delayed posttest (similar findings were obtained using the immediate posttest; see the main text). Minimum–maximum normalized brain-to-
brain synchrony values are shown (see the Method section). Each dot represents one participant, and horizontal lines depict means for all 
participants; gray regions represent one standard deviation. The asterisk indicates a significant difference between means for learned and 
nonlearned items (p < .05).

captures student learning. In line with prior research 
(Dumas et al., 2010), our findings indicate that the alpha 
band is the most robust frequency range for BBS. Our 
findings are also consistent with prior research linking 
alpha oscillations with attention (Dikker et  al., 2020; 
Haegens, Händel, & Jensen, 2011; Haegens, Nácher, 
et al., 2011; Jensen & Mazaheri, 2010; Klimesch et al., 
2007; Palva & Palva, 2007) and memory (Meeuwissen 
et al., 2011), and with the view that the alpha rhythm 
is involved in actively suppressing task-irrelevant pro-
cessing (Haegens, Händel, & Jensen, 2011; Haegens, 
Nácher, et al., 2011; Jensen & Mazaheri, 2010; Klimesch 
et al., 2007; Palva & Palva, 2007).

Whereas previous EEG research has demonstrated that 
increases in alpha power are associated with inattention 
(e.g., Boudewyn & Carter, 2018), our findings indicate 
that increases in alpha-band BBS are associated with 
better learning outcomes. Critically, the BBS metric we 
used was based on phase rather than power. More pre-
cisely, circular correlation (our index of BBS) measures 
the extent to which phase variance covaries between two 
EEG channels (Burgess, 2013). As demonstrated by previ-
ous EEG studies, BBS increases when students are 
engaged in a task and decreases when students disen-
gage (Bevilacqua et al., 2019; Cohen et al., 2018; Dikker 
et al., 2017). Although the phenomenon of BBS is not 
yet fully understood, it is thought that when task engage-
ment increases, students’ alpha oscillations are attenu-
ated but become more phase entrained with the external 
stimulus (in this case, the lecture), leading to higher BBS 
across students (Dikker et al., 2017). Intriguingly, our 
findings suggest that alpha-band synchrony across stu-
dents might be a better predictor of learning outcomes 

than alpha power within individual students (see  
Balconi et al., 2017, for related findings). This finding 
merits further investigation in future studies.

To the best of our knowledge, only one previous 
hyperscanning EEG study addressed the relationship 
between BBS and learning outcomes. Surprisingly, this 
study did not find a significant association between BBS 
during instructional videos and live lectures and test 
performance (Bevilacqua et al., 2019). There are several 
factors that could explain this null finding, including 
insufficient power (only 12 students were measured) 
and the use of commercial-grade EEG devices in a class-
room setting, which could result in low signal-to-noise 
ratio. Furthermore, unlike in the current study, BBS was 
measured across a wide frequency range (1–20 Hz), and 
learning was assessed using only an immediate posttest 
without considering students’ preexisting knowledge.

Relatedly, whereas most previous studies only mea-
sured test performance immediately after learning, here, 
student knowledge was assessed a week before the 
lecture (to account for preexisting knowledge) and a 
week after the lecture had taken place. Interestingly, 
students’ preexisting knowledge was associated only 
with delayed rather than with immediate posttest per-
formance. This suggests that delayed posttest perfor-
mance is a more meaningful measure of learning, which 
could reflect the integration of new content with exist-
ing knowledge rather than pure short-term recall. Fur-
thermore, in contrast to previous studies that measured 
BBS only over extended periods of time (e.g., the entire 
duration of a lecture or a video; Bevilacqua et al., 2019; 
Cohen et al., 2018; Dikker et al., 2017), here we dem-
onstrated that BBS during specific lecture segments was 
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associated with learning at the individual-test-question 
level (Fig. 3).

Student-to-teacher BBS peaked at an approximately 
300-ms lag in the students’ brain activity relative to the 

teacher’s brain activity (Fig. 4). This finding is consistent 
with previous fMRI/fNIRS studies (Dikker et al., 2014; 
Y. Liu et al., 2017; Stephens et al., 2010; Zheng et al., 
2018), but these studies could not accurately estimate the 
speaker–listener delay. A delay of roughly 300 ms, as 
reported here, is consistent with the time course of lan-
guage comprehension in spoken discourse (Gwilliams, 
2020). Student-to-teacher BBS at this temporal lag signifi-
cantly predicted delayed (but not immediate) learning 
(Fig. 4b). It is possible that the association between stu-
dent-to-teacher BBS and immediate learning did not 
reach significance because of the lower signal-to-noise 
ratio in the teacher data.

This study had several limitations. First, students 
were measured in a simulated laboratory classroom 
rather than a real-world classroom. Second, the current 
findings are limited to lectures, in which information is 
conveyed in one direction from the instructor to the 
students. The focus on lectures (rather than group dis-
cussions, for example) was driven by our intent to 
minimize EEG artifacts and to examine the temporal 
lag between students and teachers’ brain activity, but 
this limits the generalizability of our findings. Third, 
this study cannot dissociate the contribution of shared 
sensory input (i.e., all students viewing the same lec-
ture) from the social interactions between students and 
teachers (Hamilton, 2021). Fourth, this study cannot 
speak to any behavioral correlates of BBS because only 
EEG activity was collected. Future research is needed 
to extend these findings to real classrooms, where stu-
dents and teachers interact with one another in a variety 
of ways, and to other populations (e.g., K–12 students). 
Further, tracking eye movements, body motion, and 
physiological signals (e.g., heart rate) in addition to 
EEG can provide a more holistic view on BBS between 
students and teachers (Hamilton, 2021; Redcay &  
Schilbach, 2019). Relatedly, further work is needed to 
understand the neural dynamics that give rise to BBS, 
for example, by examining not only what conditions 
enhance BBS but also under what circumstances BBS 
is diminished. Finally, given that group size has a criti-
cal effect on group dynamics (Rifkin et al., 2012; Shultz 
& Dunbar, 2007), future studies could assess the impact 
of group size on BBS between students and teachers. 
Future studies with larger samples could also distin-
guish between different profiles of learners and teach-
ers (e.g., students with high vs. low prior knowledge; 
novice vs. experienced teachers).

The methods we currently have to study the human 
brain do not permit more neurobiologically granular, 
mechanistic characterization of BBS. That being said, the 
measures that we used here yielded unanticipated new 
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Fig. 4. Temporal analysis of student–teacher brain-to-brain syn-
chrony (BBS). (a) Student-to-teacher alpha-band BBS in central 
electrodes as a function of temporal lag between the student’s 
and teacher’s brain activity. Negative lag values correspond to the 
teacher’s brain activity preceding the students’ brain activity. The 
shaded area reflects the standard error of the mean. BBS values 
were normalized to a scale from 0 to 1 (maximum–minimum) before 
they were averaged across dyads. The statistical significance of BBS 
at each lag was assessed using a bootstrapping test. The asterisk 
indicates a significant BBS value (p < .05, uncorrected). (b) The 
association between alpha-band student-to-teacher BBS in central 
electrodes and pretest-to-delayed-posttest change. Each dot cor-
responds to the BBS between one student and the teacher at a 
–300-ms lag (marked by the dashed line in panel a). The error band 
denotes the 1-SE prediction interval from a least-square fit.
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insights into how learning in a group context is reflected 
in the brain dynamics of teachers and learners.
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